Human population structure and its effects on sampling Y chromosome sequence variation.

نویسندگان

  • Michael F Hammer
  • Felisa Blackmer
  • Dan Garrigan
  • Michael W Nachman
  • Jason A Wilder
چکیده

The excess of rare variants in global sequencing studies of the nonrecombining portion of the Y chromosome (NRY) has been interpreted as evidence for the effects of human demographic expansion. However, many NRY polymorphisms are geographically localized and the effect of different geographical sampling on patterns of NRY variation is unknown. We use two sampling designs to detect population structure and its effects on patterns of human NRY polymorphism. First, we sequence 26.5 kb of noncoding Y chromosome DNA from 92 globally distributed males representing 35 populations. We find that the number of polymorphisms with singleton variants is positively correlated with the number of populations sampled and that there is a significant negative correlation of Tajima's D (TD) and Fu and Li's D (FD) statistics with the number of pooled populations. We then sequence the same region in a total of 73 males sampled from 3 distinct populations and find that TD and FD values for the 3 pooled and individual population samples were much less negative than those in the aforementioned global sample. Coalescent simulations show that a simple splitting model of population structure, with no changes in population size, is sufficient to produce the negative values of TD seen in our pooled samples. These empirical and simulation results suggest that observed levels of NRY population structure may lead to an upward bias in the number of singleton variants in global surveys and call into question inferences of population expansion based on global sampling strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DHPLC Applications: Finding DNA Variation on the Y Chromosome

Denaturing High-Performance Liquid Chromatography (DHPLC) is a recently developed technique forthe detection of single nucleotide polymorphisms (SNPs) and mutations. It involves the comparisonbetween two or more DNAs as a mixture of denatured and reannealed PCR products. The methodologyis based on the principle of reversed phase liquid chromatography and uses a unique DNA sepa...

متن کامل

I-49: Human Y Chromosome ProteomeProject

The success of the Human Genome Project (HGP) has provided a blueprint for the approximately 20,000 gene-encoded proteins potentially active in all of the hundreds of cell types that make up the human body. Yet we still have limited knowledge about a majority of the gene-encoded proteins which are the “building blocks of life” and “cellular machinery”. It is estimated that for nearly half of th...

متن کامل

I-3: Human Y Chromosome Proteome Project 2012 Update

The Human Genome Project has generated a blueprint for the approximately 20,300 gene-encoded proteins potentially active in any of 230 cell types that make up the human body (human proteome). However, based on the UniProtKB/Swiss-Prot database content, about 6000 of at the protein level; for many others, there is very little information related to protein function, abundance, subcellular locali...

متن کامل

O-1: Evaluation of Ethnic Patterns of Y Chromosome Microdeletions in Iranian Infertile Men with Azoospermia/Severe Oligospermia Referred to Royan Institute

Background: Microdeletions of the long arm of the chromosome Y are the most common molecular genetic cause of severe infertility in men which affect three regions of AZFa, AZFb and AZFc (Azoospermia factor). These regions contain various genes involved in spermatogenesis. The effect of ethnicity on the patterns of Y chromosome microdeletions has not been extensively studied, particulary in Iran...

متن کامل

I-34: NRY Haplotype Analysis: towards A Better Understanding of The Genetic Basis of Spermatogenic Failure

It has been established that the Y chromosome carries genes required for spermatogenesis and male fertility. For many decades worldwide screening for gene identification has been conducted in research laboratories. However, it has been a difficult process in identifying such genes (i.e. causative mutations) which could explain the phenotypic variation and could be potentially used as markers fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 164 4  شماره 

صفحات  -

تاریخ انتشار 2003